Automation technological and business - processes

ISSN-online: 2312-931X
ISSN-print: 2312-3125
ISO: 26324:2012
english_language russian_language ukranian_language

Article

НЕЙРОМЕРЕЖЕВЕ МОДЕЛЮВАННЯ ЗАЛЕЖНОСТЕЙ РЕЗУЛЬТАТІВ ВИПРОБУВАНЬ ГАЗОТУРБІННИХ АВІАДВИГУНІВ

DOI: 10.15673/atbp.v10i1.875 (ukr)


  • С. О. Субботін
  • О. В. Корнієнко

Abstract | Full Text: Роботу присвячено вирішенню актуального завдання створення математичного забезпечення для побудови моделей кількісних залежностей на основі багатошарових нейронних мереж та вирішенню за його допомогою практичної задачі моделювання залежностей параметрів процесу роботи авіаційних двигунів під час їх випробувань. Запропоновано метод побудови глибоких нейронних мереж прямого поширення, який використовує коригувальну нейронну мережу для покращення результатів роботи звичайної нейромережі. Пропонована архітектура нейромережі складається з двох блоків-нейромереж: перший – чотиришарова нейромережа прямого поширення, другий – нейронна мережа, що виправляє результати роботи першої. Для цього значення виходу першої мережі передається на вхід другої разом із вхідними параметрами. При цьому для збільшення точності для кожного вихідного параметра будується окрема модель.  Кожна з нейронних мереж навчається окремо, що дозволяє спростити та прискорити процес навчання. Навчання пропонованої нейромережі пропонується проводити на основі градієнтного методу та техніки зворотного поширення помилки. У процесі навчання мінімізується функція помилки мережі, яка визначає різницю між виходами мережі і реальними значеннями. Для збільшення точності моделі, побудованої на основі гібридної нейромережі із коригувальним блоком, пропонується  виконувати відбір інформативних ознак шляхом послідовного видалення найменш інформативних ознак, доки помилка нейронної мережі не збільшиться від чергового видалення ознаки. Для прискорення відбору доцільно використовувати зменшену кількість епох навчання та не використовувати коригувальну нейронну мережу. Розроблено програмне забезпечення, яке реалізує запропонований метод і дозволяє виконувати побудову нейронних мереж, їх навчання та тестування на вибірках даних; вирішено практичне завдання визначення значень параметрів авіаційних двигунів при проведені їх випробувань.

Keywords:

  • Ознака, навчання, нейрон, нейронна мережа, помилка, градієнт.